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A method which combines the natural directional properties of the method of charac- 
teristics with the computational efficiency of the method of lines is proposed for solving 
the conservation equations of compressible fluid flow. Although the equations are ex- 
pressed initially in implicit characteristic form, neither iteration nor matrix inversion is 
required as the equations are transformed analytically to an equivalent set in which time 
derivatives are explicitly defined. Reduced to its simplest form, the method is shown to be 
equivalent to adding optimal dissipation to the primitive form of the conservation equa- 
tions, but a more accurate implementation is recommended. 

The method of characteristics has long been recognized as a natural procedure for 
solving the equations governing transient compressible flow, as it is formulated 
in a way which precisely follows wave interactions. Unfortunately the overhead 
required to perform a characteristics solution becomes prohibitively expensive to 
follow long term transients involving shock waves. There has, therefore, been con- 
siderable interest in developing finite difference methods designed to solve the problem 
more economically. Centered difference schemes generate spurious numerical oscilla- 
tion in the neighbourhood of propagating waves, particularly shock waves. Such 
oscillation may be reduced either by using a dissipative difference scheme or by adding 
artificial dissipative terms to the equations. These alternatives may be shown to be 
equivalent. Some methods are reviewed in [I, 21. 

For systems of implicitly coupled equations, however, it is difficult to determine a 
satisfactory rationale for assigning the form and magnitude of dissipative forms or 
assigning direction to the differentiation scheme, and inappropriate choices may 
degrade rather than improve the solution. A procedure first introduced by Courant, 
Isaacson and Rees [3] shows that this difficulty can be minimized by utilizing the 
method of cheracteristics to properly assign a directional differentiation scheme. This 
paper shows further, that although the resulting implicitly defined equations can be 
solved by standard finite difference methods, they can be transformed to an explicit 
statement which may be solved directly by the computationally efficient method of 
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lines. In the latter technique, the partial differential equations are converted, by 
means of piecewise functions approximating spatial variation, into coupled ordinary 
differential equations. These are then integrated by an efficient, variable order, error 
controlled optimal step size algorithm. 

The method of lines solution is readily formulated to use, both in time and space, 
approximations of higher orders than are normally practical in finite difference solu- 
tions. The advantages of using higher order directional pseudo characteristic deriva- 
tive formulae for numerically solving the advective equation have been discussed by 
Carver and Hinds [2]. These formulae have also been used successfully to solve the 
Burger’s nonlinear equation shock problem, and the coupled linear equations des- 
cribing counter current heat exchange, for which theoretical solutions are available. 
These comparisons are briefly summarized in the appendix, but the main object of 
this paper is to show that the higher order pseudo characteristic method of lines also 
yield accurate, stable and easily implemented solutions to nonlinear coupled systems 
such as the conservation equations. 

Formulation of the Equations 

The Eulerian equations governing transient one-dimensional flow of a compressible 
fluid can be expressed in conservation law form as 

where 4 is a vector of dependent variables, F is a matrix nonlinear in Cp, and D is a 
vector accounting for irreversibility. In terms of the quantites to be conserved, mass 
density p, momentum m, and volumetric energy E, the vector components are 

where u is velocity, p is pressure and Q andfrepresent heat transfer and friction. The 
latter are normally computed by empirical relationships, and their omission from the 
subsequent discussion is merely for clarity and does not detract from the generality 
of the method proposed. 

As (2) comprises three equations and four variables, a fourth relationship is re- 
quired in the form of the equation of state. Using the internal energy per unit mass 

the equation of state may be written 

e = #(P, f> (4) 
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It is convenient to introduce the local speed of sound 

c = (dpldp)“” (5) 

along an adiabat. For locally isentropic variations, we have 

de + pd (3 = 0 (6) 

so combining (3), (4), and (5) gives 

c2 = PIP2 - Wl%J 
%VP 

(7) 

This may be used to arrive at the so-called primitive form of the Eulerian equations 

g 9 + A($) ; J, = 0 (8) 

Finally, the matrix A can be reduced to diagonal form A by a similarity transform, 
where A is the matrix of eigenvalues and the eigenvectors are columns of B-l. Multi- 
plying through by B gives the equations in characteristic form: 

Solution Procedures 

For the method of characteristics, the equalities to be maintained along each 
characteristic, follow directly from (9). They are 

dZ along dt = u + c: pc g + g + (u + c) (PC-g t- g) = 0 (lOa) 

dz along dr = u: ap ap ap 8~ 
c2x-r+u c2z- ( __ 8z 1 = 0 (lob) 

dz along dt = u - c: --pc g + g + (u - c) (-PC g $- qr) = 0 (IOC) 



60 MICHAEL B. CARVER 

These are resolved into the associated compatibility relations, ordinary differential 
equations obtained, for example by writing (lOa) as 

dZ along _ == 21 L a, 
dt 

:- (u -t- a) $ + pc ($ + (24 +a)= -0; 
h 1 

i.e., 
dP du 
dt+pC-=O 

dt (11) 

The method of characteristics procedure computes values, from finite difference 
approximations to the three compatibility equations thus obtained. Unlike fixed grid 
methods, this allows discontinuities to propagate without diffusion and as the proce- 
dure traces the wave motion, the results are regarded as the most accurate readily 
attainable [4]. However, the solution involves linear interpolation and iterative solu- 
tion of the resulting algebraic equations and is more time consuming than fixed grid 
methods [4]. Thus a fixed grid method which minimizes diffusion is sought. 

Finite difference formulations are normally based on some form of Eq. (1) or 
Eq. (8). All such schemes tend to generate spurious numerical oscillation in the 
neighbourhood of propagating waves, unless this is damped by one of the equivalent 
techniques of building in some form of dissipative difference scheme or adding 
artificial viscosity terms. Reported examples of such schemes are legion; a recent 
paper by Sod [l] reviews many of them. 

The use of the method of lines reduces the problem of developing a difference 
scheme, as progression in the time variable may be taken care of by a reliable high- 
order error controlled predictor-corrector integration algorithm, such as those 
reported by Gear [S] or Hindmarsh [6]. The problem of spurious oscillation must 
still be reduced by dissipative techniques. 

The difficulties in both the method of lines and the finite difference approach are 
compounded by the implicit coupling of the variables in systems such as the conserva- 
tion equations. This makes it difficult to assign a direction to an upwind derivative or 
a magnitude and form to an artificial viscosity. Further complexities arise in the need 
to cater for possible flow reversals and to determine the number and nature of 
boundary conditions applicable in a given situation. 

Attempts to overcome these dilemmas using the method of lines have been only 
partially successful. Heydweiler and Sincovec [7] use a sliding formula which combines 
central and directional differentiation, Hyman [8] obtains a stable solution by intro- 
ducing artificial dissipation to the conservation form (2) but avoids the need to apply 
an energy boundary condition by using reflective boundaries. 

Neither of these approaches takes advantage of the information that can be gleaned 
from the characteristic structure, and this has been done only occasionally in finite 
difference schemes. Courant, Tsaacson and Rees [3] proposed that in a fixed grid 
method, expressions should be differentiated and boundary restraints applied in the 
direction dictated by the characteristics, but this method has apparently not been 
greatly exploited until recently. A series of papers by Walkden and coauthors report 
successful use of the method in conjunction with pseudo viscous smoothing terms for 
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modelling two-dimensional supersonic flow fields [9]. Beam and Warming [lo] also 
report a scheme in which the local eigenvalues are used to assign directionality in a 
block tridiagonal implicit scheme, but do not quote the exact formulation. 

Recent investigations by Hancox and Banerjee [4] have extended the applications 
of the characteristic finite difference technique, and the procedure has been used to 
develop an implicit finite difference scheme using sparse techniques to handle the 
matrices which result from (9) once the derivatives have been evaluated in the appro- 
priate sense. This method has been implemented in a versatile program package for 
simulating transient two-phase flow, and numerical predictions compare very 
favourably with experimental results [I 11. Below we show that these equations may be 
formulated in an equivalent manner which retains the same useful features but uses 
high-order formulae to attain better accuracy. The resulting block matrix is inverted 
analytically to obtain an explicit expression for the time derivative at each point, so 
these equations may be readily solved by finite difference means or by the method of 
lines. The latter course also uses higher order formulae in time and guarantees an 
optimal time step size for numerical stability. 

PSEUDO CHARACTERISTIC FORM 

Consider now the expanded form of Eqs. (9) in which spatial derivatives have been 
subscripted +, -, and 0, to denote differentiation according to the u + c, u - c and 
u characteristic directions: 

pc g + g + (u + c) (PC g -t gj = 0 

6p aP 
( 

aP C2at-7$+U c2Y&-x ap 0 
1 = (12) 

Explicit equations for &/13t, ap/Zt and aP/at may now be obtained by elimination. 
They are: 
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Note that for the case in which identical formulae are used for the +, -, and 0 
subscripted derivatives, these equations reduce to the primitive form (8). 

Equations (13) are obviously more complicated to assemble in finite difference form 
than equations (9). but this is no deterrent to applying the method of lines, as all 
differentiation is done automatically by directional formulae of any suitable accuracy. 
The computation will also proceed more efficiently than an attempted solution of (9) 
as numerical matrix inversion is no longer necessary. 

The Simplest Case 

Although any order or type of formula may be used to compute the directional 
derivatives in (13) it is instructive to further investigate the simplest case, that in 
which first order formulae are used for subsonic flow and equally spaced coordinates. 
For any variable 4, this gives: 

aq 4i - 4i-1 a9 %+1 - 4i ~ =z ~ = 
2ZL AZ ' %Z- AZ 

Note that now 

( 

3 84 

+ az- i 

4i+1 - qi-1 

aZ+ AZ 
_23 

___ zzz-- 

az* 

and 

4i+1 - 2% + qi-1 = -A 

AZ 

(14) 

(15) 

where aq/az* and a2q/6z, are the second-order central difference formulae for first and 
second derivatives. 

The equations, therefore, reduce to 

ap 
++c2 

au AZ a2P 
i 

21% --= - 
at * 

__ - c T aZz, ZlZ, t P” T 1 

ap - r I u 1 a2p a34 -- _ L u~+p~-~~((I I,jF - at 0 * * + p” aZz, 1 

which can be regarded as the primitive form of the equations expressed in second- 
order accuracy, with explicitly defined dissipative terms added. These dissipative 
terms are not arbitrary, as their magnitude depends on local properties and on the 
coordinate spacing, thus correctly linking the dissipation to convection as discussed 
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in [2]. In fact any dissipative finite difference scheme derives its dissipative properties 
from the fact that it can be rearranged to reveal some sort of approximation 
to a second derivative term [12]. 

Equations (17) result from taking the simplest expression for the directional deriva- 
tives. It is, however, computationally more effective to program the equations in the 
general form (12) as this permits the use of higher-order upwind difference formulae 
such as those available in the FORSIM method of lines package [ 141. In particular, we 
will here consider two third-order formulae recommended by Carver and Hinds [2]. 
They are the four-point Lagrangian upwind bias formula 

& (u(I)) = S,(u(z - 2~71) - 6U(I - $1 + 3U(Q + 2UV + &))/6dZ (18) 

and the three-point upwind Hermite formula 

2 (U(z)) = S,(U(Z + S,) + 4U(I) - 5U(I - &))/4dZ - '1 -g WV - w (19 

In each case the direction is assigned by S, = U(I)/1 U(l)/ . These formulae were 
developed and discussed in [2], other possibilities, such as the three-point upwind 
Lagrangian, and two-point upwind Hermite, were found to give excessive phase error 
when applied to the advective equation, while higher-order methods were too time 
consuming for general use. Equations (18) and (19) may also be rearranged to revela 
dissipative terms. The only problem in applying these formulae occurs at the 
boundaries, where, if necessary, order is maintained at the expense of directionality as 
this has been shown to be more accurate [2]. 

A choice of integrator is also possible in the method of lines. For all the applica- 
tions quoted, a version of the Hindmarsh-Gear integrator [6] was used. Because the 
transients are rapid, there is, however, little advantage in using the high-order Adams 
formulation available in this algorithm, so maximum order was restricted to four, and 
no Jacobian estimates were used to accelerate the predictor corrector. A much 
simpler algorithm, retaining efficient step size control, would suffice. 

TEST PWBLEMS 

Vichnevetsky [15] has shown that all finite difference, finite element and method of 
lines schemes generate spurious numerical oscillations in the neighbourhood of 
travelling waves, and that these oscillations are compounded by each reflection until 
the spurious oscillations overwhelm the signal wave. 

The following test problems illustrate that the pseudo characteristic method mini- 
mizes this instability in contrast to the primitive method of lines, standard finite 
difference methods, and the linear finite element method. 



MICHAEL B. CARVER 64 

Test Problem A 

Sod [l] compares a number of finite difference methods with reference to a simple 
shock tube problem. In this case, initial conditions are 

0 < x < 0.5, P = p = 1.0, u = 0, Ax = 0.01 
(20) 

0.5 < x < 1.0, p = 0.1, p = 0.125, u=o 

This problem does not involve flow reversal or changing boundary conditions. It 
does, however, have a large pressure ratio which generates shock and rarefaction 
waves resulting in a pressure discontinuity and three discontinuities in the spatial 
derivative of density. 

Comparing results of the simple pseudo characteristic (PC) method shown in 
Fig. 1 with those of methods illustrated by Sod, it is apparent that the PC method 

FIG. I. Shock tube problem, test problem A. Simple (two-point) pseudo characteristic method. 

does not exhibit the erroneous steep fronted rarefaction wave developed by the 
rudimentary upwind method discussed by Sod. The simple PC method also is superior 
in accuracy to the Lax-Wendroff method [16], the MacCormack method [17], and 
Rusanov methods [18], as all of these require additional dissipation to produce stable 
results. The MacCormack second-order method with dissipation appears to give the 
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best results of this group [l], and is used here as a basis for comparison. In brief this 
method for Eq. (1) is in two-step predictor-corrector form, 

An artificial damping term defined as 

must be used as a third step to obtain stable results, and the choice of 01 is entirely 
arbitrary. Figure 2 shows results obtained for two choices of a. 

Results from the pseudo characteristic method using the higher order formulae (18) 
and (19) are shown in Fig. 3. Small spurious peaks are evident in the neighbourhood 
of discontinuities, but it will be shown in Test Problem B that these do not become 
unstable on reflection, and the addition of further dissipation, at least for these condi- 
tions, appears unnecessary. 

The accuracy of the higher-order PC methods also appear to compare very 
favourably to the more complicated methods reviewed by Sod, but the PC method is 
easier to implement and computationally efficient. The rationale of the PC method is 
also naturally founded on the characteristics, and does not rely on arbitrary numerical 
stabilization. 

Test Problem B 

In order to assess the performance of the PC method during wave reflections and 
flow reversals, the scheme has also been tested on the classic shock tube problem 
discussed by Rudinger [19]. A long closed cylinder, initially containing quiescent gas 
at pressure P,, is suddenly exposed to an ambient pressure P,., at one end. lf the pressure 
ratio PR = PO/PA is less than 1, a compression wave enters the duct; if greater, gas 
flows out and a rarefaction wave enters. In either case the incident wave reflects at the 
closed end and then reflects negatively on returning to the open end. Tf P, is large 
enough, the outlet becomes choked at sonic velocity. This very simple test problem, 
therefore, incorporates compression and rarefaction waves, reflection, flow reversal 
and possibly, choked flow, all of which cause problems in most numerical schemes. 

It is difficult to obtain independent solutions to this problem as few schemes will 
handle the flow reversal, as efficiently as the pseudo characteristic method, so it is more 
convenient to invent a Utopian situation in which the entire process, including in-flow 
and out-flow, is reversible. Under such conditions, the wave action is uniform and 
cyclic, and a good test of the numerical scheme is how well the waves can be repro- 
duced during several cycles of propagation and reflection. 
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FIG. 2. Test problem A. MacCormack method. (a) N = 0.25, (b) cx = 0.5. 
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FIG. 3. Test problem A. Higher-order Pseudo characteristic methods. (a) Four-point bias, (b) 
upwind Hermite. 
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If several cycles of reflection are depicted, graphs of spatial profile at different times 
are difficult to assimilate, so in the following figures, the performances of the pseudo 
characteristic schemes and others are illustrated by the transient response of normali- 
zed pressure at points x = 0,0.25,0.5,0.75, 1.0 in a lOl-point grid. 

Figure 4 shows that all the pseudo characteristic schemes remain stable through 
several cycles of reflection. The simple PC method permits attenuation after several 
cycles due to numerical dissipation losses, but the higher-order methods are conserva- 
tive, retaining the wave form well. 

The primitive form, Eqs. (8) with artificial dissipation added: 

may also be programmed easily to account for flow reversals, and is used as a basis for 
comparison. 

Figure 5 shows results from the primitive form, using central differences and various 
magnitudes of dissipation. As for the MacCormack method, these may be stabilized by 
sufficient dissipation but this attenuates the waves. Finally, Fig. 6 shows that results 
from the linear finite element solution of the primitive equations are subject to similar 
failings in stability and conservation. 

CASE 1 PLOT 1 79-02-15 
- PC.E, + - PC.73 )( - RI.1 I . 

FIG. 4. Test problem B. Pseudo characteristic methods cyclical response of pressure at various 
axial stations. (a) Simple (two-point) PC method, (b) four-point upwind bias PC method: (c) upwind 
Hermite PC method. 
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CRSE 1 PLOT I 

CRSE 1 PLOT I 

FIG. 4-Continued. 
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------ 
1 

FIG. 5. Test problem B. Primitive form with central derivatives. (a) a = 0, (b) a: = 0.001, 
(c) a = 0.01. 
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CRSE 1 PLOT I 79-02-16 
- . PC?. * 1 - pt.751 

FIG. 5-Continued. 

CRSE 1 PLOT 1 79-02-16 

FIG. 6. Test problem B. Primitive linear finite element form with dissipation. (a) N = 0, (b) CY = 
0.001, (c) OI = 0.01. 
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CONCLUSIONS 

The pseudo characteristic method follows naturally from the characteristic formula- 
tion of the conservation equations, and may be shown to contain explicitly defined 
dissipative terms. Even in its simplest formulation it is more stable and more accurate 
than conventional finite difference and method of lines formulations. Higher order 
formulations increase accuracy without detracting from stability. The computational 
overhead is no greater than that for the primitive method with artificial dissipation, as 
six first derivatives in space must be evaluated instead of three first and three second 
derivatives. Tt is planned to use the method for comparison to applications bench- 
marks. such as those described in [4], and to investigate the applicability to other 
hyperbolic systems such as those mentioned in [7]. 

APPENDIX 

Application of Higher-Order Pseudo Characteristics Methods to Simple 
Hyperbolic Equations 

The use of higher-order directional derivative formulae in method of lines solution 
to the advective equation is discussed in detail in reference [2], which recommends two 
third-order formulae, the four-point upwind biased Lagrangian, and a three-point 
upwind biased Hermite. They are respectively: 

& (u(f)) = s,( u(z - 2&) - 6U(I - Sr) + 3 U(I) + 2 U(Z + &))!6dz 

& (U(Q) = qu(z + s,> + 4u(1) - 5 ~(1 - &))/4&~ - f &- ( W - sr>> (A2) 

In support of their use in the numerical solution of the conservation equations of 
compressible flow, their application to simpler hyperbolic equations is considered here, 
Two test examples are used, in each case integration is by the Hindmarsh-Gear 
integration algorithm [6] in which a relative accuracy of 10-l was imposed such that 
the dominant error is spatial in origin. Errors quoted are the average absolute error 
over the range oft and x quoted. 

Case I. Burger ‘s Equation 

The equation 

(A3) 

can be regarded as the nonlinear advective equation with the addition of an arbitrary 
dissipation term, but this interpretation can be misleading; unless 01 is made a function 
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of coordinate spacing, the dominance of the dissipation term increases with the 
number of solution points chosen; we will, however, test a fixed number of points. 

The particular application investigated here is that in which initial and boundary 
conditions are extracted from the analytical solution. 

u(x 
3 

t) = 0. IeP + 0.5e-b + ccc 
e-a + e-b + e-c 

a = 0.05(x - 0.5 + 4.95t)/oI 

b = 0.25(x - 0.5 + 0.75t)/u 

c = 0.50(x - 0.375)/a 

This establishes two shock waves travelling at different speeds and merging at 
t = -5. The problem is well documented in [8,20] so the table A.1, showing average 
errors is sufficient evidence here. Note that as cy. decreases, convection dominates 
diffusion, and the higher-order, five-point symmetric ditferencing begins to produce 
less accurate results than the reference three-point difference method, whereas the 
directional methods are considerably superior at low values of o(. 

TABLE Al 
Burger’s Equation-Traveliing Waves” 

Normalized Errors 

a 0.01 0.005 0.002 0.001 0.0005 
Ref. error (1.1 x 10-y (1.8 x 10-Z) (1.0 x 10-y (2.1 x 10-y (3.7 X 10-V 

3-pt. Central 
5-pt. Central 
2-pt. Upwind 
4-pt. Upwind 

bias 
3-pt. Upwind 

Hermite 

1.0 1.0 1.0 1.0 1.0 
0.41 0.32 0.65 0.89 1.13 
8.5 4.6 1.4 0.72 0.47 
0.39 0.36 0.44 0.40 0.33 

0.35 0.26 0.26 0.29 0.26 

a Average absolute error over time and space expressed with reference to the three-point 
central difference formula results (x E (0, l), dx = 0.02, t -+ I .O). 

Case 2. Counter Current Heat Exchange 

The hot and cold side temperatures u1 and uz of fluids travelling with velocities uI 
and uz in a single pass counter current heat exchanger are given by the equations 

CA5) 

cu1- 7 -, 

iit 
- -.v,(u, - us) - 012 

%- iiu, 
at - iY,(Ul - uz) + 4 z 
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and the inner fluid temperature above steady state after an inlet step change uO at 
x = 0 is given in Ref. [21] as: 

II = modified Bessel function of the first kind, order 1. 

646) 

Vl = v, = 1) y1 = 0.1, 33 = 0.001, 240 = 1, XE(0, IO), t--t 10. 

The resulting transient is a travelling discontinuity in u1 and u2. The discontinuity 
is not as severe as is the previous equation for low IX, but the directional difference 
formulae are again markedly superior, as shown in Table A2. 

TABLE A2 
Counter Current Heat Exchangef 

Normalized 
21 points 41 points CPU time 

AX 0.5 0.25 
Ref. error 0.0465 0.0358 (21 & 41 pts.) 

Normalized errors 

3-pt. Central 1.00 1.00 1.00 
5-pt. Central 0.98 0.97 1.03 
2-pt. Upwind 1.30 1.37 1.02 
4-pt. Upwind bias 0.66 0.52 1.06 
3-pt. Upwind Hermite 0.60 0.45 1.06 

a Average absolute error over time and space expressed with respect to the three-point central 
difference formula result (X E (0, lo), t -+ 10.0, u,, = 1.0). 
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